What was said above is also valid when a wetting liquid possessing a wetting hysteresis is used. In this
case to obtain the sizes of the pore narrowings one must allow for the outflow factor cos ®, while in estimat-
ing the sizes of pores at the surface one must allow for the equilibrium factor cos ®.

To determine the total number of pores,one must draw upon additional data based on additional model
considerations or microscopy data,

NOTATION

P is the pressure;

o is the surface tension;

8 is the wetting angle;

R is the capillary radius;

Q is the gas flow rate through membrane;

Q is the gas flow rate through wetted membrane during an increase in pressure;
Q is the gas flow rate through wetted membrane during a decrease in pressure;
P ig the capillary pressure in the narrowest part of the capillary;

Pt is the capillary pressure at the exit of the capillary at the surface.
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EVAPORATION OF SEVERAL SUBSTANCES
FROM A POROUS BODY

E. A. Todko UDC 536.24.02

A system of equations of heat and mass transfer is derived and analyzed which describes evapora-
tion of several volatile substances from a porous body.

Porous materials are widely heat treated in industry for the removal of volatile substances. One form
of such a treatment is drying, where one substance (moisture) evaporates [1], In some technological pro-
cesses it is important to remove from a porous body not one but a group of various volatile substance (fillers)
contained therein, In titanium production, e.g., the reactant mass is vacuum-heated for purification of the
titanium sponge of magnesjum and magnesium chloride [2]. When not one but several volatile substances are
removed, there arise new patterns due to the effect which escaping of more volatile fillers has on the distribu-
tion of less volatile fillers in the porous body.

I. Mathematical Model. The system of transfer equations will be constructed on the following basic
premises.

1. The condensate phase of volatile fillers is stationary relative to the nskeleton" of porous material,

This is possible, e.g., when sublimation of solid fillers occurs during heat treatment. When some of the
fillers are in the liquid state, however, then one assumes that they are adsorbed on the surface of the solid

phase and not free to move under action of gravitational or capillary forces.

2. The fillers do not form solutions with one another or with the material of the porous body.

3, Transport of vapors through channels and pores is affected by the pressure gradient, according to
Darcy's law, the role of diffusion being negligible. This also assumes a subsonic flow of vapor (Mach number
smaller than unity), with vapor behaving like an incompressible fluid, and assumes the model of a continuous
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medium to be applicable (the Knudsen number to be sufficiently small). The latter condition can always be
satisfied, if the porous material does not contain very fine pores.

4, The "skeleton" of the porous material does not become deformed during heat treatment.

We consider a material containing N volatile fillers (N = 1), Let m? and po; be, respectively, the mass
per unit volume of porous material and the density of the i-th substance in the condensate state, The volume
fraction f; of the i-th substance is

fi = milps. 0]
The porosity of the body is
N
o=1—S. (2)

Subscript i = 0 refers to the "skeleton" material and subscript i = 1 refers to the material of the most vola-
tile filler. :

Let m; be the mass per unit pore volume of the i-th substance (i =1, 2, ... ,) in the vapor state
and Pj be its partial pressure in pores. Then

my; =oM;P,/IRT 3
according to the equation of state for an ideal gas.

Let W; be the density of internal sinks of the condensate phase resulting from evaporation of the i-th
substance (i = 1), Pg be the saturated-vapor pressure of the i-th substance or the equilibrium pressure of the
substance adsorbed on the surface, S; be the surface area per unit pore volume of the i-th substance in the
condensate state (during evaporation) or the active surface area of pores (during condensation), and K; be the
evaporation rate coefficient [3],

K; =V M2xRT. 4)
Then the equation of condensation—evaporation kinetics is

0, v=0, PP <Py '
Wi=10; j, =0, P >P; ©)
KS: (P} — P)).

The i-th substance evaporates when P‘i’ > P4 and condenses when P‘i’ < Pi‘ Expression (5) also takes into
account that a condensate phase cannot evaporate when it is absent (fi = 0) and that no condensation can occur
in the absence of pores (v = 0),

Quantity P‘.l’ can be expressed as
P! = A;exp (— Q/RT), (6

where Qj is the latent heat of evaporation per mole of the i-th substance and A4 is a constant whose value de-
pends on the properties of this substance,

According to Dalton's law, the total vapor pressure in pores is
N
P= 2 P;. )
i=1

Considering the dependence of the permeability k on the porosity v
k=Fkw, (8)
Darcy's law can be expressed as
(u) = —(Bm)vyP, €
where 7 is the viscosity of the vapor and (@) is its mean-mass velocity.
Flux g; of the i-th filler in the vapor phase is determined from the relation

gi=m; (u) =— M; (*mRT)*P,yP. 10)
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The thermal flux is
N T
= —MyT + Y (m/M) j adT (u). (11)
=1 0

Here cj denotes the specific heat per mole of the i-th filler in the vapor state.

The thermal conductivity A of a composite material can be calculated according to any of the well-known
algorithms [4] from known thermal conductivities A; of the component substances. Here the simplest algorithm

N
A =‘§ Fiks. (12)

will be used.

Setting up, according to the well-known scheme [5], the equations of mass balance for each filler in the
condensate state and in the vapor state, and also the heat-balance equations, will, on the basis of earlier-
made assumptions and derived expressions, yield the following system of transfer equations

""':_fi=;%.i=1, 2, ..., N, 13)
T

2 @PT) = @)y - 17 (PUT) VP!

+RWiM;, i=1,2, ..., N, 14
i & oT
[1 + %ld,fi + (av/RT o) % ciP,] o
N
— (ak%? hofoRT) 2 PP - yT =
i=l
N N (15)
=ay- [(1 + 2 eifi) VT] — (alhofo) 2 Qo Wi M;,
* i=1 i=1
a = MM,/poch; 16)
d; = pic? MypocoMifo; & = Milhofo, 17

with cg denoting the specific heat per mole of the i-th substance (i =0,1,..., N) in the condensate state.

The heat-transfer equation (15) becomes much simpler when the specific heat of vaporization in pores
is disregarded as negligible in comparison with the specific heat of condensation and when convective heat
transfer by vapor is disregarded as negligible in comparison with that by condensate, It is also expedient
to introduce the following set of dimensionless quantities:

g = Q/RT®, B} = Aexp(—qi), (18)
ax = (A/ Ar) exp (gn — @), (19)
Kps = MopiQi/poMifo£0AT, (20)

x; = p¢RAT/M,B?, (21)

H; = #°B]lan, (22)

L; = (X°B{S;K/ap;, (23)

t = TYAT, 0 = (T — T9/AT, (24)
Fo = at/(X%?, (25)

n; = PyBY, nf =PJIB?, (26)
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N
Cb = 2 Qg s 27

o; = W, (X9%p;a. : 28)

Here X’ is the characteristic dimension, T? = 0 is the reference point from which temperature is measured
(°K), AT isthe characteristic temperature difference, and Bg is the characteristic pressure of the i-th filler.

With this notation and the simplifying assumptions, our system of transfer equations (13)-(15) becomes

fi:—~0)i,l:=l,2,,,.,N, ' (29)

9 (EL);HiV.(Efivb)+x,m,,'=1, 2, ..., N, (30)
N
8
(1 3 = [+ Do) N o o

I, Algorithm and Results of Numerical Calculations. The system of equations (29)-(31) was solved by
the finite-differences method according to the explicit scheme.

Let 67 be the time step, Egd be the value of function #(v, Npy) at nodes s in the grid, and E%@ be the
value of function &(v, Npg + 67) at node s in the grid. The value DS‘I’ is regarded as equal to that of function
V&, NFo) taken at the internal node s of the grid in the finite-differences approximation, With this notation,
the algorithm of calculation of functions fj, 6, and nj (i =1, 2, 3,. .. ,N) at each internal node of the grid is

= Ef, — 8tL,E, (exp [q:0/(8 + £)] — s}, (32)
i1 N '
=1—fo— S Efu— ¥ Edn (33)
k=1 Re==i1
. 0, M, <O
Esfi=1G;, M, >G;; (34)
M,
L
0 ,
A=1+4 o Zd (E? fi + Eof), (35)
i==1
0 - NI 4 fYDoL/ A \A‘, . 5
E20 = EQ +0eDu ({14 3 afe) DO/ Ar 4 3 KpeE7 o — Efill Ay @0
=1 =]
10— {L,-, EXf, 5 0; (37
0, EXf; = o, ’
1
Co=— 1E] (/@ + 9 + Ec 0/® + D)1, 38)

C.Eg; + 1:L? 61E? (exp ¢:0/(8 + £)}

Egﬂi-': 5 . (
39)
C,+ 1L 61— H.b Ds{ v ]
+ L) bt Dal5
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Fig. 1. Variation of (a) the volume fraction of
fillers, (b) the partial pressures of their vapors,
and (c) the temperature in the block of titanium
sponge along the cylinder radius at the instants

of time Nfo = 0.60 (1) and Ny = 5.50 (2) in the
course of thermovacuum purification; numerals
with a single prime sign refer to magnesium,
numerals with a double prime sign refer to mag-
nesium chloride; the initial relative temperatures
are ¢ = 0, the initial partial vapor pressures of
both fillers are n; = 75 = 1; dots indicate calcula~
ted values at grid nodes.

Calculations were made for the thermovacuum process of purification of titanium sponge containing mag-
nesium and magnesium chloride as fillers. The mathematical scheme of the problem is as follows, A porous
cylinder with fillers uniformly distributed over the cross section and the height is initially at a constant tem-
perature T?. At the instant of time Nyq = 0 the cylinder is subjected to heat and vacuumization, whereupon
immediately a constant underpressuredevelops at the lateral surface and thetemperature here stabilizes at Ty > T°,
Both bases of the cylinder are thermally insulated and no gases escape through them. In this configuration
the problem is a one-dimensional one,

Preliminary calculations had established that under conditions of thermovacuum treatment the evapora-
tion of fillers from a sponge is characterized by degenerate kinetics. When the Lj-number characterizing the
dimensionless evaporation rate with wj kinetics is larger than 10, then a further increase in this number will
not speed up the purification process. In our case numbers Ly and L, for magnesium and its salis, respec-
tively, were of the order of 10°-107, Therefore, the limiting items in the purification process were supply of

heat to the porous body and removal of vapors from it.

Typical results of calculations pertaining to one particular variant of the thermovacuum purification pro-
cess are shown in Fig. 1.

The zone within which the magnesium (most volatile of the fwo fillers) content varies substantially is
narrow in the radial direction (Fig.1la, curves 1' and 2') and, therefore, can be treated as a sort of "evapora-
tion front" of magnesium.

Magnesiuﬁn vapor carries vapor of the less volatile filler, viz., of magnesium chloride away with it from
the zone of intensive magnesium evaporation. The intensity of this process, which we will tentatively call
"forced entrainment,” is much higher than the intensity of magnesium chloride evaporation at the same tem-
peratures in the absence of evaporating magnesium.
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TABLE 1. Dependence of the Time for Complete Purifica-
tion of Titanium Sponge on the Initial Ratio of Filler Volume

Fractions
ItemNo. | £ | A ot Fos
1 l 0,73 0 ' 0 7,516
9 | 063 0,10 0,159 7,192
3 J 0,56 0,17 0,303 7,518
4 0,52 0.21 0,404 7.845

The velocity of the vapor stream increases along the path between the zone of forced entrainment and
the surface of the cylinder. The partial pressure of magnesium chloride vapor rises along this path (Fig, 1b,
curves 1" and 2") on the other hand, and can exceed the equilibrium pressure. In this case there occurs
condensation of magnesium chloride vapor, a process which we will tentatively call intermediate condensa-
tion.

The zone of forced entrainment and the zone of infermediate condensation appear, respectively, as an
intermediate minimum and an intermediate maximum along the curve of f; (volume fraction of magnesium
chloride) as a function of the radial coordinate v (Fig.la, curves 1" and 2"),

The temperature inside the region where evaporation of magnesium has not yet begun decreases with
time, as it does inside the evaporation zone too, even though the temperature of the outside cylinder surface
remains constant (Fig.1lc, curves 1 and 2).

The length of time N%‘o required for complete purification of titanium sponge by removal of fillers de-
pends on the initial ratio fy/f; of filler volume fractions. Results of calculations regarding this dependence
are given in Table 1. The initial sum of both magnesium and magnesium chloride volume fractions in our
block of titanium sponge was held constant at 0,73 and the volume fraction of titanium in the sponge was as-
sumed to be 0.26,

The data in Table 1 indicate the existence of an optimum initial f,/f; ratio, close to 0,16, which will
ensure the shortest time for complete removal of fillers from titanium sponge.

NOTATION
N is the number of volatile fillers;
i is the consecutive number of a substance (i = 0 refers to the "skeleton," i > 0 refers

to fillers);

m; is the mass of condensate per unit volume of the medium;

m; is the mass of vapor per unit volume of pores;

P is the density;

f; is the volume fraction;

v is the porosity;

M; is the molecular mass;

R is the universal gas constant;

T is the absolute temperature;

AT is the characteristic temperature difference;

\f is the density of internal sinks;

Py is the partial pressure;

Pg is the saturated-vapor pressure or the equilibrium vapor pressure of an adsorbed
substance;

P is the total pressure;

5; is the surface area per unit volume of pores;

K; is the evaporation rate coefficient;

Qj is the latent heat of evaporation;

x° is the permeability;

{w) is the mean-mass velocity of vapor in pores;

1 is the viscosity of vapor;

g is the mass flux density of a substance;

g is the thermal flux density;
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c‘i’ is the specific heat of condensate;
¢ is the specific heat of vapor;
A is the thermal conductivity of the composite material;
A is the thermal conductivity of the material components;
a is the thermal diffusivity;
d; is the relative heat capacity;
ej is the relative thermal conductivity;
q; is the dimensionless thermal effect of evaporation;
BO is the characteristic pressure;
afk is the ratio of the characteristic pressures of substances i and k;
Kp; is the phase transformation number;
Xi is the vapor tension number;
Hj is the permeability number;
L is the evaporation intensity;
T is the reference temperature (°K)
T is the time;
xl3 is the space coordinate;
X is the characteristic dimension;
vk is the referred radial coordinate;
Ngo is the dimensionless time;
0 is the dimensionless temperature;
T{ and ﬂ‘i’ are the dimensionless partial pressure and saturated-vapor pressure of the i-th
substance;
b is the total pressure referred to the characteristic vapor pressure of the i-th sub-
stance;
wj is the dimensionless density of internal sinks;
o7 is the time step;
Egtb and E°s¢b are the values of functions ®(v, Nfg) and (¥, Nyq + 67), respectively, at node s of
the grid; : .
Dg¢ is the difference analog of function V¢ (v, Nfg) at an internal node s of the grid;
Ty is the temperature at the boundary;
N%‘o is the dimensionless time for complete purification of a porous material,
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